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SU_RY

The flashback of hydrogen-oxygen-nitrogen flames was studied as a

function of pressure, burner diameter, equivalence ratio, and oxidant

strength. The results were treated on the assumption that the product of

the critical boundary velocity gradient for flashback and the initial

concentration of that reactant which is not in excess is proportional to

a mean reaction rate associated with the flame zone. It was further

assumed that this reaction rate can be expressed in terms of initial con-

centrations and flame temperature.

Measurements at constant flame temperature yield orders of reaction

with respect to hydrogen and oxygen. These do not vary with flame tem-

perature. Measurements in which pressure is varied for several values

of oxidant strength at constant equivalence ratio yield a total order of

reaction and a function describing the dependence of the mean reaction

rate on flame temperature. The total reaction order is independent of

flame temperature and equal to the sum of the orders for hydrogen and

oxygen. The dependence of the reaction rate on flame temperature cannot

be described by a constant activation energy. The activation energy

obtained apparently increases with flame temperature. Flashback results

can be described by a single rate constant which is independent of equiva-

lence ratio. Values were estimated for this rate constant as a function

of flame temperature.

INTRODUCTION

The thermal concept of flame propagation predicts that the critical

boundary velocity gradient for flashback should be related to the mean

reaction time within the flame and should be independent of transport

processes occurring through the flame zone (refs. 1 to 5). Previous

studies have indicated that the exponent describing the dependence of the

critical gradient on pressure is closely related to an over-all reaction
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order within the flame (refs. 3 and A). However, if one assumesthat the
dependenceon flame temperature of the meanflame reaction rate can be
described by an activation energy given in the Arrhenius form, the over-
all reaction order showsconsiderable variation with change of diluent
or oxidant strength for a single fuel_ or on substitution amongchemical-
ly similar fuels (ref. 5).

The present study is an attempt to evaluate, through suitable flash-
back measurements_the various parameters in the rate expression for the
hydrogen-oxygen-nitrogen flame as a function of flame temperature. In
this way one might investigate, in detail, the apparent change of over-
all reaction order with flame temperature. The hydrogen-oxygen-nitrogen
flame was chosen for several reasons. First, the flame reaction is prob-
ably the simplest amongactive flames involving fuel and oxygen. Second_
the fact that all constituents are diatomic (and thus have similar heat
capacities) makespossible manychanges in proportion of constituents of
the initial mixture without significant change in flame temperature.
Third_ flashback could be obtained over a range of pressures and burner
diameters compatible with existing apparatus.
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THEORETICAL BACKGROUND

The Semenov equation expresses the burning velocity as a function

of rates of heat and mass transport and average rates of heat release

occurring within a flame. The derivation of this equation and the assump-

tions involved are presented in reference 8. According to reference 7,

the Semenov equation may be approximated, under certain conditions_ as

u2 - % (I)
b ao 0o

(All symbols are defined in the appendix.) Here _b is the thermal dif-

fusivity associated with the flame zone, defined as kb/Cp,bP b. The

quantity _b is a mean flame reaction rate defined as _b dT/(Tb - To)"

O

The quantity ao may be defined by considering equation (20) of refer-

ence 6, which relates the highest temperature attained in the flame zone

Tb to the amount of heat Q released by the chemical reaction. The equa-
tion is given as

Here Q

ao Q = PoCp, o(Tb - To)

is in molar units, but Cp, o is the specific heat per unit

(2)



3

O

i

o

%]

!

c_)

mass, assumed to be constant. Thus, if To is constant and T b is a

maximum for nearly stoichiometric proportions of initial constituents_

a o is roughly equal to fuel concentration for lean flames and oxygen

concentration for rich flames. For stoichiometric flames ao may refer

to either fuel or oxygen, provided that Q is expressed in the proper

units. The proportionality between aoQ and Tb - T O further requires

that the extent of dissociation at temperatures near Tb is not too
large.

The thermal quenching equation of reference 8 has the form

:
_q

(3)

Here the subscript q generally denotes conditions in a nearly quenched

flame_ and ao has the same meaning as before. Since _b/_q is very

nearly constant for similar flames (ref. 7), equations (I) and (3) may be

combined and simplified to give

(4)
dq a o

The critical boundary velocity gradient for flashback gf is generally

proportional to Ub/d q (refs. 2 and _). Thus, equation _4) may be written
as

gfa ° c( _b (5 )

One may assume that the mean reaction rate for a hydrogen-oxygen flame

reaction may be expressed in terms of a general mass-action law

.o m n l__

_b = K aH2ao2ax_Ur b)
(s)

where _, m, and n are constants. The quantity F(Tb) is a function of

flame temperature alone. It is apparent that equation (6) may refer to

the rate of disappearance of either hydrogen or oxygen or to the rate of

formation of water. At constant flame temperature equations (5) and (6)

may be combined to give

m-i n _ (7)
gf _ aH 2 a02ax
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for lean flames and

oman-la _ (8)gf _ _H2 02 x

for rich flames. For stoichiometric flames, either equation would apply.
This result follows from the definition of ao as the concentration in
the initial mixture of the reactant which is not in excess. It also as-
sumesthat concentrations in the initial mixture can be used to describe
a reaction taking place within the flame zone at flame temperature. That
is, it does not account for changes in concentration due to heating or
depletion of reactants caused by reaction in the flame zone. (To avoid
the use of double subscripts, it is noted here that all concentrations in
equations (5) and (6) and in all subsequent discussion refer to initial
concentrations, unless otherwise noted.) The effect of heating maybe
incorporated into F(Tb) , but not the effect of reactant depletion. Ex-
pressions for correcting initial concentrations as a function of flame
temperature and equivalence ratio are developed in reference 6. However,
from results of calculations of burning velocity as a function of equiva-
lence ratio presented in reference 9_ it appears that the correction sug-
gested in reference 6 will often overcompensatefor depletion. The pro-
cedure followed here is to evaluate parameters appearing in the rate ex-
pression in terms of initial concentrations. Before conclusions are
drawl±based omthese values, however, the effect of correcting initial
concentrations for depletion is examined.

The form of equations (6) to (8) suggests the following methods
based on flashback by which the various unknownparameters might be
evaluated:

!

C

(I) At equivalence ratios less than unity, one might replace nitrogen

by oxygen in various proportions at a constant concentration of hydrogen.

This substitution should maintain nearly constant flame temperature. At

constant pressure_ then_ gf cc an provided that _ = 0, that is, that
02 ,

the reaction rate does not depend on the concentration of inert gas. In

that case, a plot of log gf against log a02 should have a slope equal

to n.

(2) At equivalence ratios greater than unity, one might replace

nitrogen by hydrogen in various proportions at a constant concentration

of oxygen. This substitution should also maintain flame temperature

nearly constant and, at constant pressure, should permit determination

of the order with respect to hydrogen, again provided that _ = O.

(3) The over-all reaction order r is defined as

r = _ + m + n (9)
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The relation between r and gf may be shown by expressing equation (7)
in terms of equivalence ratio as follows:

- ,-n n+m-ia_xF(Tb)gf _ (Z_) aH2
(io)

This equation applies for lean or stoichiometric flames. If gf is

varied at constant pressure and equivalence ratio, equation (i0) may be

written

r-i I •

gf c( aH2 axF(T b)
(ii)

If the reaction rate depends only on hydrogen and oxygen, I = 0

equation (ll) becomes

and

gf o(_21F(Tb) (12)

If a form for F(Tb) is assumed, for example, the Arrhenius form with an

assumed activation energy, equation (12) can be used to determine r in

terms of the pressure exponent on gf and known properties of the initial

mixture. However, if a form cannot be assumed for F(Tb) , then equation

(12) contains two unknowns, r and F(Tb). In order to evaluate these

two quantities, two independent flashback measurements are necessary.

One suitable measurement would be the variation of gf with pressure

for a single initial mixture. Another measurement would be the variation

of gf at constant pressure and equivalence ratio with increasing pro-

portion of oxygen in the oxidant mixture. By performing both measurements

over a range of flame temperature, one could examine any change in r

with Tb. Furthermore, comparison of r values so obtained with values

obtained independently for m and n would serve as a check on the

assumption that _ = 0.

APPARATUS AND PROCEDURE

The low-pressure combustion chamber and the system for metering and

mixing gases are described elsewhere (ref. 5). The main burner was a

tube about 125 centimeters long which had a diameter of 1.89 centimeters.

It was water-cooled near the lip. Burner diameter was varied by using

inserts with inside diameters of 0.928, 1.O16, and 1.459 centimeters.

For flashback measurements a stable flame was established first. Then

pressure was increased slowly at constant mass flow until the flame

flashed back. Wherever it was possible, flashback was obtained with

normal laminar flames. However, where the initial mixture contained

29.6 percent hydrogen at equivalence ratios less than l, flames were un-

steady and polyhedral, and flashback was obtained under turbulent

conditions.



Tank hydrogen (98 to 99 percent H2) was used as fuel. Oxidant mix-
tures having various nitrogen-oxygen ratios were generally prepared by
metering the flow of tank nitrogen and oxygen separately and allowing
the two gases to mix. Twooxidant mixtures (one 35 percent oxygen and
65 percent nitrogen, the other 50 percent oxygen and 50 percent nitrogen)
were specially prepared and available in tanks. All materials were used
without further purification.

TREATMENTOFDATA

Reduction of Data

For laminar flames gf was computedfrom

gf = 8Uf/d (15)

(ref. I0). For turbulent flames the expression

Uf 0.8
gf = 0.023 _-Ref (14)

was used (ref. i0) where Reynolds number of flashback is defined as

Ref = [fdp/_ (15)

The density was computedon the assumption that the gases were ideal.
The viscosity was estimated from plots of viscosity as a function of
composition (ref. ii) for hydrogen-nitrogen and hydrogen-oxygen mixtures.

l
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Effect of Burner Diameter

If gf is to serve as a measure of a time associated with the flame

reaction_ it must be independent of burner diameter. In the present ex-

periments, this condition held for all burners used_ provided the oxidant

strength @ was less than 0.5. For _ _ 0.5, however, critical flash-

back gradients for the two smallest burners (1.016 and 0.928 cm in diam.)

were considerably smaller than those obtained with the two largest burn-

ers. This effect did not depend on the material of which the burner was

made or the mechanical condition of the burner lip.

A review of past flashback experiments performed with the present

experimental arrangement shows that this deviation follows a trend pre-

viously observed. Thus_ for flames having burning velocities in the

range 200 to 300 centimeters per second (hydrogen-air and propane-

oxygen-nitrogen mixtures with @ = 0.5) burners 1.89 to 0.55 centimeter
f.
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in diameter gave consistent flashback gradients; a burner 0.3 centimeter

in diameter caused flashback at much lower values of gf. For flames

having burning velocities of about 400 centimeters per second (propane-

oxygen and ethylene-oxygen-nitrogen mixtures with @ = 0.5), a burner

0.55 centimeter in diameter tended to deviate to lower values of gf.

Thus, the present deviation by a 1-centimeter burner seems to be as-

sociated with burning velocities of about 600 centimeters per second or

larger.

The cause of this decrease in gf is not presently known. The
deviation is favored by high burning velocities and small diameters; it

is probably peculiar to the present apparatus, since such an effect has

not been previously reported. The procedure followed here is to ignore

those results obtained in 1-centimeter burners which show deviation

toward small gf values.

Other slight deviations, associated with low Reynolds numbers, are

shown as dotted lines in figure l(a). These had been observed previous-

ly (ref. 3) and attributed to partial quenching of the flame by the

cooled wall.

RESULTS AND DISCUSSION

General Description of Results

Critical boundary velocity gradients for flashback are shown as

functions of pressure within the combustion chamber in figures 1 and 2.

Results are shown for various values of burner diameter and initial com-

position. Since the initial gas mixtures contain three components in

generally varying proportions, two quantities must be specified to de-

fine the composition. Those chosen are the equivalence ratio

stoich

(16)

and the oxidant strength

_ x% (17)

Xo2 + xNz

Values of gf for stoichiometric hydrogen-air flames shown as dashed

lines in figures l(c), l(d), and 2 are based on previously reported

measurements, which were obtained near an equivalence ratio of 1

(ref. 4).



Thus, the dashed lines represent an interpolation between _ = 0.95 and
= i.i0 for laminar flames and _ = 0.95 and _ = 1.20 for turbulent

flames (ref. 12).

All flame temperatures discussed are calculated equilibrium tempera-
tures obtained by the method of reference 13. They are based on a single
set of thermochemical data and are therefore consistent amongthemselves.
In general, slopes with respect to pressure have been estimated by eye.
If least-square methods were used, certain points would have had to be
arbitrarily weighted and others disregarded, particularly at low Reynolds
numbers, where quenching mayhave affected the data, and at high Reynolds
numbers, where instability in the flow mayhave affected the results.
Accordingly, the second decimal place in the pressure slopes probably has
little physical significance. However, it was retained through subsequent
calculations.

!
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Results at Constant Flame Temperature

Results near 2580 ° K. - As discussed in the section THEORETICAL

BACKGROUND, the individual contributions of fuel and oxygen to the over-
all order of reaction can be determined from the change in the critical

flashback gradient with change in the fuel or oxygen concentration in

the original mixture at constant pressure and flame temperature. The ap-

proach outlined in that section has been applied in the following way.

A stoichiometric flame having an oxidant strength of 0.35 and a calcu-

lated flame temperature of about 2560 ° K at a pressure of 15 centimeters

of mercury was chosen as an experimentally convenient reference. The

change of gf with pressure for this flame was determined. Then,
similar measurements were made on mixtures obtained from the reference

mixture by replacing nitrogen by oxygen at constant hydrogen concentra-

tion. All such lean mixtures have flame temperatures equal to about

2560 ° K at a pressure of 15 centimeters of mercury. One may also replace

nitrogen by hydrogen at constant oxygen concentration. If the reference

stoichiometric flame is again taken to be that for which @ = 0.35, all

rich mixtures obtained by such substitution will have flame temperatures

calculated to be about 2620 ° K at 15 centimeters of mercury. Thus,

values for the order with respect to fuel and oxygen determined in this

way refer to flame temperatures which differ by about 60 ° K.

Flashback results for flames at these temperatures are shown in

figures l(a) and (b). The variation in flame temperature with pressure

over the range of pressures for which data were obtained is less than

the difference between calculated temperatures on the lean and rich sides

and need not be considered. On the lean side (fig. l(a)) the concentra-

tion of hydrogen is kept constant at 41.0 percent. On the rich side

(fig. l(b)), an oxygen concentration of 20.5 percent is maintained. Since

d in gf/d In P is constant, within experimental uncertainty, for
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lean, stoichiometric, and rich flames, the temperature difference of

60 ° K between the lean and rich side is not significant. The fact that

d in gf/d in P is constant permits cross plots of gf against fuel con-

centration for lean flames at constant pressure with reasonable assurance

that results so cbtained will be independent of pressure. Such cross

plots are shown on the right in figures l(a) and (b). It is seen that

log gf is linear in log X02 or log XH2.

The fact that (_ log gf/_ log ao2)aH2 is constant indicates that

the dependence of the reaction rate on the concentration of inert gas is

zero. By logarithmic differentiation of equation (7) at constant hydro-

gen concentration, one obtains

_ log g (_ log ax)
_ l_g a_0a_ = n + "Z log all2

_ _2 a02

(18)

The value of (_ log ax/_ log ao2)aH2 is sufficiently large and suf-

ficiently variable that _ must be very close to zero for the exponential

dependence of gf on oxygen concentration to appear constant. A similar

argument, based on equation (8), applies for the apparent constancy of

m. The results of the cross plots at constant pressure give n = 0.92 at

pressures of 15 and ii centimeters of mercury and m = 1.37 at 13 centi-

meters of mercury. The calculations are summarized in table I. The sum

of m and n is about 2.29, which agrees rather well with values for

the over-all reaction order for the hydrogen-air flame obtained from

measurements of flashback, burning velocity, and quenching distance

(refs. 4 and 14).

Results near 2300 ° K. - It is of interest to repeat the measurements

described in the preceding section under conditions yielding significantly

different values of flame temperature. This should give some information

regarding the behavior of individual and over-all reaction orders with

changes in flame temperature. It was not feasible to work at flame tem-

peratures much above 2600 ° K; therefore, measurements were made at lower

flame temperatures. The stoichiometric hydrogen-air flame, having a cal-

culated temperature of 2348 ° K at a pressure of 1 atmosphere, was chosen

as a reference. Results are shown in figures l(c) and (d) and summarized

in table I.

For rich flames flashback followed a normal course. A cross plot of

log gf against log aH2 at 14.8 percent oxygen and P = 19 centimeters

of mercury gave m = 1.39, a result in excellent agreement with that ob-

tained near 2580 ° K. On the lean side, however, flames of 29.6 percent
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hydrogen were polyhedral in shape and unsteady and displayed a regular
spinning motion. The relation between gf and P observed for such
flames was complicated and clearly unrelated to the flame reaction.
Therefore, the attempt was madeto obtain values of m and n on the
lean side for mixtures containing 29.6 percent hydrogen by observing the
flashback of turbulent flames. Previous studies on the flashback of
turbulent flames had indicated that critical boundary velocity gradients
for laminar and turbulent flashback differ by a factor that is independent
of pressure and nearly the samefor all systems studied (refs. 5 and 12).
Thus, one should obtain the samevalues of m, n, and I regardless of
whether measurementsare based on laminar or turbulent flashback. Fur-
thermore, since turbulent flashback seemsto be controlled by processes
taking place in a nearly laminar portion of the turbulent boundary layer,
results obtained from turbulent flashback should apply at the temperature
of the corresponding laminar flame, even though the space-average tem-
perature of the turbulent flame might be somewhatlower.

Accordingly, results are shownin figure l(d) for air (interpolated
for _ = i from the data of ref. 12) and for mixtures with _ = 0.$5
and 0.50. Calculated flame temperatures for this series of lean flames
were nearly constant, but the value for lean flames was about 60° K lower
than that for the reference stoichiometric flame (see table I). However,
as shownon the right side of figure l(d), all three points fall on the
samestraight line. The slope has a value of about 0.92, in agreement
with the value for n found at the higher flame temperature.

!
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Comparison of results based on initial and effective concentra-

tions. - According to the Semenov theory, the concentrations which affect

the flame reaction rate are effective concentrations in the flame zone.

Expressions for these effective concentrations are given in reference 9.

However, in figure i, flashback gradients are plotted as functions of

initial concentrations. It is important, then, to see how the results

would look in terms of concentrations corrected by the expressions given

in reference 9. For a hydrogen-oxygen-inert gas flame the relation

between and a*
a02 02 can be expressed approximately as

02 = ao 2 \aH2jst, oich H

(19)

for @ < i. An equation symmetrical in a02 and aH2 would apply for

>i. The quantity 5 is a corlstant whose order of magnitude is given

by (RT_/Eact)/(Tb - To). According to reference 6, the value of this quan-

tity shculd not exceed 0.i for the assumptions in the theory to be justi-

fied. Therefore, it will be assumed that 5 = 0.i, even though the value
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of Eac t which follows from this assumption, about 50 kilocalories, is

rather large compared with other values of Eac t estimated from flame

properties. If one defines an effective mole fraction as

X _ = a* (RTb/P), one may use equation (1) to relate initial and effective

mole fractions at constant pressure and flame temperature. For lean

flames, one obtains

f02 : x02 - (20)

and for rich flames

= (21)
Y_2 XH2 1.80 X02

One may evaluate X .02 and XH2_ from data given in table I.

Figure 5 shows plots of log gf against log X _02 and log H 2

under the same conditions as in figures l(a) and (b). Results in terms

of X* are considerably more complex than in terms of X. Both m and

n are considerably less than i and are strongly dependent on X_ Con-

sequently, no simple relation exists among m, n, and r. There is no

prior reason for rejecting results in terms of X _ in favor of those in

terms of X. However, if one accepts results in terms of X * as valid_

one cannot use them to develop a conventional mass-action expression.

In order to develop such an expression from flashback data_ one must

assume that the expressions for effective concentrations given in refer-

ence 9 overcorrect for depletion of reactants and that initial concen-

trations are a mere satisfactory approximation to true effective

concentrations.

Results at Constant Equivalence Ratio

Figure 2 shows gf plotted against chamber pressure at a constant

equivalence ratio of 1 for varying values of oxidant strength. The

slopes of the lines increase slightly but significantly with increasing

@. This increase is of the same order of magnitude as that previously

observed for hydrocarbon-oxygen-inert gas flames (ref. 5). One may re-

late the slopes to the reaction order r by differentiating equation

(12) logarithmically with respect to pressure at constant Q and _:

d in gf a in F(Tb) d in Tb (22)
d in P = r - 1 + 8 In Tb " din P
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As a first approximation on F(Tb) one may assume that the depend-
ence of the rate of the flame reaction on flame temperature is a simple

exponential function which can be described by a constant activation

energy. For this model, which is discussed in references 3, 4, and 14,

one may write equation (22) in the form

d in gf Eact IT_ _q) d In Tb (23)d in P - r' - i 2R + d In P

and evaluate an approximate reaction order r' Fc_r consistency with

previous applications of equation (23), an activation energy of 23 kilo-

calories per mole was assumed for the hydrogen-oxygen flame reaction.

The flame temperature was related to Tq, the temperature of a nearly

quenched flame, by

!

Tq -- 0.8 Tb + 0.2 T o
(24)

(ref. 7). Values of d in Tb/d in P are based on flame temperatures

calculated at pressures of i and 0.I atmosphere.

Values of r' based on equation (23) are shown in table II. It

can be seen that the apparent reaction order increases with flame tem-

perature and that the value of r' for _ = 0.35 is significantly

greater than the value of the over-all order previously determined as

the sum of orders for hydrogen and oxygen. These two factors suggest

that the assumption of a simple exponential dependence of the flame re-

action rate on flame temperature is inadequate, at least for the hydrogen-

oxygen flame reaction.

However, if F(Tb) is treated as an unknown function, the data

plotted in figure 2 can be used along with values of the approximate

reaction order r' to determine the form of F(Tb) and evaluate its

dependence on flame temperature. With this information, equation (22)

can be used to compute a better approximation to the over-all reaction

order at various flame temperatures. The procedure is outlined in the

section THEORETICAL BACKGROUND and is based on the fact that, as shown

r-I is a function of flame temperature alone if
by equation (12), gf/aH2

equivalence ratio is held constant. A plot of log (gf/_H2-I)-_" against

I/T b is shown in figure 4 for a constant pressure of 15 centimeters cf
mercury and a constant equivalence ratio of i. This quantity should be

proportional to F(Tb). The plot shows considerable curvature, which

supports the previous suggestion that the dependence of the reaction

rate on flame temperature could not be described by a constant activa-

tion energy, at least for the present flame system. One may obtain
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approximate values of $ In F(Tb)/_(1/T b) for various values of Tb from

the slopes of tangents drawn to the dotted curve in figure 4. The actual

slopes must be multiplied by -0.454/T b to give _ in F(Tb)/$ in Tb.

These values may be used in equation (22) to recompute a set of better

approximations to r. The results of this calculation are shown in the

first coluI_m on the ri_]ht in table II. The values obtained scatter be-

tween 2.15 and 2.5A; they show no significant trend with fla_le tempera-

ture, in contrast with the set of r' values° Of course, the accuracy

of this calculation is not very high, since it depends on evaluations of

derivatives from a curve which is itself not especially well defined by

experimental data. However, the results sug:est that, within the rela-

tively large experimental error, the reaction order has a value of about

2.2 or g. 5 independent of flame temperature. This agrees well with the
value of about 2.3 obtained from the dete_nination of individual orders

at constant flame temperature. One may use this value in equation (12)

and compute a second approximation to F(Tb). This is shown as the solid

line in figure 4. The two sets of data points define curves which are

similar in shape and position. Specifically, the curvature in the plot

of log F(Tb) against I/T b is not sensitive to assumptions made re-

garding the reaction order.

It should be noted that results for hydrogen-ar _on-"air" flames

(ref. 3) shown in table II and plotted in figure 4 are in satisfactory

agreement with values for corresponding hydrogen-oxygen-nitrogen flames.

This is a further indication that the nature of the diluent does not

affect the course of the hydrogen oxidation at these temperatures.

Comparison of Results for Lean and Rich Flashback

at Constant Flame Temperature

For the several curves plotted in figures l(a) and (b), both oxygen

concentration and equivalence ratio are varied. Therefore, the data

plotted in these figures may be further cross-plotted as a function of

equivalence ratio at constant pressure. Such a cross plot is shown in

figure 5 for a pressure of 15 centimeters of mercury. The curve consists

of a lean and a rich branch and has a minimum at an equivalence ratio of

i. The lean branch corresponds to a flame temperature of about 2540 ° K,

whereas the rich branch represents a temperature of about 2620 ° K. The

curve as a whole is not significantly different from that which would be

obtained for a single flame temperature of about 2580 ° K. Thus, it is

analogous to plots of mass burning velocity _gainst equivalence ratio at

constant flame temperature that are presented in references 15 and 16.

The fact that the curve in figure 5 goes through a minimum at an equiv-

alence ratio of i reflects the fact that the concentration product portion

of the rate expression in terms of initial concentrations goes through a

minimum for a stoichiometric initial mixture.



Figure 5 showsthat gf is a double-valued function of equivalence
ratio. If gf measures a reaction time, then one should be able to
describe lean and rich branches by the constants ×I and ×r' respec-
tively, which are related to the specific rate constant for the reaction
between hydrogen and oxygen. On the lean side one may assumea relation
of the form

m n

gfaH2 ×zaHza02
(2s)

and on the rich side

= m n

gfa02 ×raH2a02 (26)

The constants ×_ and ×r are most easily computed from equations (25)

and (26) by use of the cross plots shown on the right in figures l(a) and

(b). Thus, in terms of mole fractions equation (25) may be solved for

_l to give

gf (RTo_ m+n-I

×Z - m-_'n'\-_-/

XH 2 XO 2

(zT)

and equation (Z6) becomes

gf (RTo _m+n- I
×r- m _n-l--P-

Xoz\ /
(z8)

Using any convenient sets of gf values from figures l(a) and (b), one

obtains ×i = 9.1×106 and ×r = 4.5×106 . Thus ×_ is about twice as

great as ×r" From the data of figures l(a) and (b) it is easily seen
m n

that the product aH2a02 for a given value of gf on the lean side

_m an
equals _H2 02 for the same value of gf, on the rich side at constant

pressure and flame temperature. Thus, the observation that ×i/×r is

about 2 is consistent with the fact that the steady rate of consumption

of hydrogen, which is proportional to gfaH2 , is twice the rate of

consumption of oxygen, which is proportional to gfao2.

!
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Calculation of Specific Rate Constant for _ydrogen-Nitrogen-

Oxygen Flame Reaction

One may define a rate constant by the expression

k(T) = _/_ (29)

where _ is a constant. The variation of k with T should be repre-

sented by the best approximation to F(Tb) given in figure 4. It is

apparent that in order to evaluate k(T) one must know _ or must be

able to calculate _ from a known value of -daH2/dt , the average rate

of consumption of hydrogen in the flame. A calculation of -daH2/dt is

made in reference 7 for a stoichiometric hydrogen-air flame at a pressure

of i atmosphere. This calculation, based on burning velocity and quench-

ing distance, gave a value of 169 moles per liter per second. The value

of gf for a stoichiometric hydrogen-air flame is known to be about
8500 second -I at i atmosphere (refs. 4 and i0). Therefore, one may use

the relation

d_2 (50)

gfal{2 = - _ dt

to evaluate _. A value of 0.60 is obtained. Since _ is a constant

independent of temperature and pressure, one may use it in equation (29)

along with the value for ×Z determined in the previous section to ob-

tain the result k(2580) = 1.46xi07 (molesl'5)(liters-l'3)(sec-l) " If

the dependence of the reaction rate on flame temperature is given by the

best approximation to the quantity proportional to F(Tb) shown in fig-

ure 4, then one should be able to write

k(T) = k°F(Tb) (51)

If one solves equation (51) for k° in terms of k(2580) and F(2580)

one obtains ko = l. SSxlO 5. One may then plot k(T) as a function of

Tb. Such a plot is shown as a solid line in figure 6.

It is possible to obtain values of k over a range of flame tem-

perature by a different method. First, one may evaluate k for a

stoichiometric hydrogen-air flame by

-daH2 - k(25¢8) 1.58 0.92 (52)
at aH2 a02

This gives k(2548) : 0.66×107 • One may then extrapolate each of the

curves in figure 2 to a pressure of i atmosphere and estimate values

of -daH2/dt by assuming a relation of the form
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Igf(l atm)aH212 (daH2/dt)2_l atm

I_f(l atm)aH2]l = (daH2/dt)l,l atm

(33)

where the subscripts denote any two values of oxidant strength. Inser-

tion of resulting values of -daH2/dt into equation (32) gives k as a

function of Tb. These results are shown as the dotted curve in figure 6.

The agreement between the two curves is satisfactory, considering

the many possibilities for systematic error involved in their determina-

tion. It is difficult to decide which of the two is preferable. The

dotted curve involves several long extrapolations of low-pressure data

up to i atmosphere. The solid curve assumes that _ is independent of

flame temperatttre, an assumption which car_uot be checked by use of

existing data.

I

<D

SUMMARY OF RESULTS

The flashback of hydrogen-oxygen-nitrogen flames has been measured

at reduced pressures as a function of burner diameter, pressure, equiva-

lence ratio, and oxidant strength. On the basis of a treatment which

assumed the critical boundary velocity gradient for flashback to be a

measure of a mean flame reaction time, the followin_ conclusions were
drawn:

i. The order of the flame reaction with respect to hydrogen is about

1.4, independent of flame temperature.

2. The order of the flame reaction with respect to oxygen is about

0.9, independent of flame temperature.

3. The total order of reaction is independent of flame temperature

and equal to the sum of the orders with respect to hydrogen and oxygen.

4. The variation of flame reaction rate with flame temperature

cannot be described by a constant activation energy.

5. From relations among flashback, burning velocity, and quenching

distance, a specific rate constant for the flame reaction can be esti-

mated as a function of flame temperature.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, October I, 1958
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APPENDTX - SYMBOLS

concentration, moles/liter

specific heat, °al/(_)(oK)

burner diameter, quenching distance, cm

activation energy, kcal/mole

dimensionless coefficient, (Tq - To)/(T b

dimensionless geometric factor

-i
critical boundary velocity gradient, sec

To)

Reynolds nu_nber, dimensionless

total reaction order, dimensionless

temperature, OK

time, sec

mean stream velocity, cm/sec

burning velocity, cm/sec

mole fraction

thermal diffusivity, cm2/sec

dimensionless coefficient

specific rate constant, -''---(moles-l'5)(liters-l'5)(sec -I)

exponential dependence of reaction rate on concentration of inert

constituents, dimensionless

exponential dependence of reaction rate on hydrogen concentration,
dimensionless

exponential dependence of reaction rate on oxygen concentration,
dimensionless

pressure, arm or cm Hg

heat of reaction, cal/mole

gas constant, cal/(mole)(°K) or (liters)(atm)/°K
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6

k

P

P

m

co

dimensionless additive term

rate constant in terms of flashback

thermal conductivity, cal/(sec)(cm)(°K)

viscosity, poises

density, g/cm 5

equivalence ratio, dimensionless

oxidant strength, dimensionless

reaction rate, moles/(liter)(sec)

Subscripts:

b no_aal flame

f flashback

_2 hydrogen

N2 nitrogen

02 oxygen

o initial conditions

q quenched flame

r,Z rich and lean equivalence ratios

x chemically inert constituents of original mixture

Superscripts:

-- mean value

o independent of temperature

' first approximation

corrected for depletion of reactants

!

O
-q
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TABLE II. - DETERMINATION OF OVER-ALL REACTION ORDER

FROM FLASHBACK OF STOICHIOMETRIC HYDROGEN-

OXYGEN-NITROGEN FLAMES

Oxidant

strength,

Mole

fraction

of

hydrogen,

XH 2

Flame

temperature_

%,

°n,
i atm

d inT b

d inP

d in gfl

dlnP

Total

reaction

order

r T

0.21
a. 21

.28

.55

• 50
.70

2348
a2590

2570
2685

2834

2956

0.017 1.33

a.027 al. 51

.025 1.54

.030 I.$5

.034 1.72

.040 1.79

2.25
a2.38

2.41

2.41
2.57

2.62

O. 296
a. 296

.365

.411

•500

•583

r

2.26
a2.51

2.34:

2.17

2.15

2.16

aNitrogen in air replaced by argon or helium.

I

0
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